132 research outputs found

    Pathomechanisms of a CLCN1 Mutation Found in a Russian Family Suffering From Becker's Myotonia

    Get PDF
    Objective: Myotonia congenita (MC) is a rare muscle disease characterized by sarcolemma over-excitability inducing skeletal muscle stiffness. It can be inherited either as an autosomal dominant (Thomsen's disease) or an autosomal recessive (Becker's disease) trait. Both types are caused by loss-of-function mutations in the CLCN1 gene, encoding for ClC-1 chloride channel. We found a ClC-1 mutation, p.G411C, identified in Russian patients who suffered from a severe form of Becker's disease. The purpose of this study was to provide a solid correlation between G411C dysfunction and clinical symptoms in the affected patient. Methods: We provide clinical and genetic information of the proband kindred. Functional studies include patch-clamp electrophysiology, biotinylation assay, western blot analysis, and confocal imaging of G411C and wild-type ClC-1 channels expressed in HEK293T cells. Results: The G411C mutation dramatically abolished chloride currents in transfected HEK cells. Biochemical experiments revealed that the majority of G411C mutant channels did not reach the plasma membrane but remained trapped in the cytoplasm. Treatment with the proteasome inhibitor MG132 reduced the degradation rate of G411C mutant channels, leading to their expression at the plasma membrane. However, despite an increase in cell surface expression, no significant chloride current was recorded in the G411C-transfected cell treated with MG132, suggesting that this mutation produces non-functional ClC-1 chloride channels. Conclusion: These results suggest that the molecular pathophysiology of G411C is linked to a reduced plasma membrane expression and biophysical dysfunction of mutant channels, likely due to a misfolding defect. Chloride current abolition confirms that the mutation is responsible for the clinical phenotype

    ClC-1 mutations in myotonia congenita patients: insights into molecular gating mechanisms and genotype-phenotype correlation

    Get PDF
    Loss-of-function mutations of the skeletal muscle ClC-1 channel cause myotonia congenita with variable phenotypes. Using patch clamp we show that F484L, located in the conducting pore, probably induces mild dominant myotonia by right-shifting the slow gating of ClC-1 channel, without exerting a dominant-negative effect on the wild-type (WT) subunit. Molecular dynamics simulations suggest that F484L affects the slow gate by increasing the frequency and the stability of H-bond formation between E232 in helix F and Y578 in helix R. Three other myotonic ClC-1 mutations are shown to produce distinct effects on channel function: L198P shifts the slow gate to positive potentials, V640G reduces channel activity, while L628P displays a WT-like behaviour (electrophysiology data only). Our results provide novel insight into the molecular mechanisms underlying normal and altered ClC-1 function

    Region-Specific Responses of Adductor Longus Muscle to Gravitational Load-Dependent Activity in Wistar Hannover Rats

    Get PDF
    Response of adductor longus (AL) muscle to gravitational unloading and reloading was studied. Male Wistar Hannover rats (5-wk old) were hindlimb-unloaded for 16 days with or without 16-day ambulation recovery. The electromyogram (EMG) activity in AL decreased after acute unloading, but that in the rostral region was even elevated during continuous unloading. The EMG levels in the caudal region gradually increased up to 6th day, but decreased again. Approximately 97% of fibers in the caudal region were pure type I at the beginning of experiment. Mean percentage of type I fibers in the rostral region was 61% and that of type I+II and II fiber was 14 and 25%, respectively. The percent type I fibers decreased and de novo appearance of type I+II was noted after unloading. But the fiber phenotype in caudal, not rostral and middle, region was normalized after 16-day ambulation. Pronounced atrophy after unloading and re-growth following ambulation was noted in type I fibers of the caudal region. Sarcomere length in the caudal region was passively shortened during unloading, but that in the rostral region was unchanged or even stretched slightly. Growth-associated increase of myonuclear number seen in the caudal region of control rats was inhibited by unloading. Number of mitotic active satellite cells decreased after unloading only in the caudal region. It was indicated that the responses of fiber properties in AL to unloading and reloading were closely related to the region-specific neural and mechanical activities, being the caudal region more responsive

    Adaptation of Mouse Skeletal Muscle to Long-Term Microgravity in the MDS Mission

    Get PDF
    The effect of microgravity on skeletal muscles has so far been examined in rat and mice only after short-term (5–20 day) spaceflights. The mice drawer system (MDS) program, sponsored by Italian Space Agency, for the first time aimed to investigate the consequences of long-term (91 days) exposure to microgravity in mice within the International Space Station. Muscle atrophy was present indistinctly in all fiber types of the slow-twitch soleus muscle, but was only slightly greater than that observed after 20 days of spaceflight. Myosin heavy chain analysis indicated a concomitant slow-to-fast transition of soleus. In addition, spaceflight induced translocation of sarcolemmal nitric oxide synthase-1 (NOS1) into the cytosol in soleus but not in the fast-twitch extensor digitorum longus (EDL) muscle. Most of the sarcolemmal ion channel subunits were up-regulated, more in soleus than EDL, whereas Ca2+-activated K+ channels were down-regulated, consistent with the phenotype transition. Gene expression of the atrophy-related ubiquitin-ligases was up-regulated in both spaceflown soleus and EDL muscles, whereas autophagy genes were in the control range. Muscle-specific IGF-1 and interleukin-6 were down-regulated in soleus but up-regulated in EDL. Also, various stress-related genes were up-regulated in spaceflown EDL, not in soleus. Altogether, these results suggest that EDL muscle may resist to microgravity-induced atrophy by activating compensatory and protective pathways. Our study shows the extended sensitivity of antigravity soleus muscle after prolonged exposition to microgravity, suggests possible mechanisms accounting for the resistance of EDL, and individuates some molecular targets for the development of countermeasures

    To hit or not to hit, that is the question -genome-wide structure-based druggability predictions for <i>pseudomonas aeruginosa </i>proteins

    Get PDF
    Pseudomonas aeruginosa is a Gram-negative bacterium known to cause opportunistic infections in immune-compromised or immunosuppressed individuals that often prove fatal. New drugs to combat this organism are therefore sought after. To this end, we subjected the gene products of predicted perturbative genes to structure-based druggability predictions using DrugPred. Making this approach suitable for large-scale predictions required the introduction of new methods for calculation of descriptors, development of a workflow to identify suitable pockets in homologous proteins and establishment of criteria to obtain valid druggability predictions based on homologs. We were able to identify 29 perturbative proteins of P. aeruginosa that may contain druggable pockets, including some of them with no or no drug-like inhibitors deposited in ChEMBL. These proteins form promising novel targets for drug discovery against P. aeruginosa

    Analyzing multitarget activity landscapes using protein-ligand interaction fingerprints: interaction cliffs.

    Get PDF
    This is the original submitted version, before peer review. The final peer-reviewed version is available from ACS at http://pubs.acs.org/doi/abs/10.1021/ci500721x.Activity landscape modeling is mostly a descriptive technique that allows rationalizing continuous and discontinuous SARs. Nevertheless, the interpretation of some landscape features, especially of activity cliffs, is not straightforward. As the nature of activity cliffs depends on the ligand and the target, information regarding both should be included in the analysis. A specific way to include this information is using protein-ligand interaction fingerprints (IFPs). In this paper we report the activity landscape modeling of 507 ligand-kinase complexes (from the KLIFS database) including IFP, which facilitates the analysis and interpretation of activity cliffs. Here we introduce the structure-activity-interaction similarity (SAIS) maps that incorporate information on ligand-target contact similarity. We also introduce the concept of interaction cliffs defined as ligand-target complexes with high structural and interaction similarity but have a large potency difference of the ligands. Moreover, the information retrieved regarding the specific interaction allowed the identification of activity cliff hot spots, which help to rationalize activity cliffs from the target point of view. In general, the information provided by IFPs provides a structure-based understanding of some activity landscape features. This paper shows examples of analyses that can be carried out when IFPs are added to the activity landscape model.M-L is very grateful to CONACyT (No. 217442/312933) and the Cambridge Overseas Trust for funding. AB thanks Unilever for funding and the European Research Council for a Starting Grant (ERC-2013- StG-336159 MIXTURE). J.L.M-F. is grateful to the School of Chemistry, Department of Pharmacy of the National Autonomous University of Mexico (UNAM) for support. This work was supported by a scholarship from the Secretariat of Public Education and the Mexican government

    Modulation of K+ conductances by Ca2+ and human chorionic gonadotrophin in Leydig cells from mature rat testis

    No full text
    1. Although 12 the control of steroidogenic activity of the Leydig cell by the peptides luteinizing hormone (LK) and human chorionic gonadotrophin (hCG) is clearly mediated by cAMP, the extent to which Ca2+ controls the Leydig cell function is less well defined. In the present study, the whole-cell configuration of the patch-clamp technique was used to investigate the modulation of potassium conductances by calcium and hCG, in the Leydig cells from mature rat testis. 2. In symmetrical glutamate solutions, depolarizations elicited outwardly rectifying currents, which were mainly carried by potassium and were blocked by tetraethylammonium and 4-aminopyridine, for values of [Ca2+](i) below 10(-8) M, transient currents of low amplitudes, insensitive to charybdotoxin (CTX) and iberiotoxin (IBTX), mere activated above -40 mV. For [Ca2+](i) values of 10(-7) M and above, noisy currents with slow activation kinetics were activated above 0 mV. These currents were sustained and were sensitive to CTX and IBTX. 3. Both current types were modulated by intracellular calcium. Ionomycin and a [Ca2+](i) elevation in the range from 10(-9) to 10(-7) M, both inhibited the CTX-insensitive currents, whereas a rise in the calcium concentration above 10(-7) M increased the amplitude and shifted the threshold of activation of the CTX-sensitive currents to less positive levels. 4. hCG (1-50 in, ml(-1)), in conditions where the chloride currents were strongly inhibited by 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonic acid (SITS), induced a partial inhibition of the CTX-insensitive currents but was unable to increase the CTX-sensitive currents 5. No voltage-sensitive calcium current was recorded in control or hCG-stimulated cells. 6. The results indicate that hCG inhibits one kind of Ca2+ modulated channel, perhaps as a result of a moderate [Ca2+](i) rise, but is unable to increase the intracellular Ca2+ concentration to the range in which large conductance Ca2+-dependent channels are activated
    • …
    corecore